P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
e-mail: info@avtechpulse.com http://www.avtechpulse.com/

INSTRUCTIONS

\qquad

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681
Fax: 613-226-2802 or 1-800-561-1970
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY 2
TECHNICAL SUPPORT. 2
TABLE OF CONTENTS 3
INTRODUCTION. 5
AVAILABLE OPTIONS 5
SPECIFICATIONS 6
EC DECLARATION OF CONFORMITY. 7
INSTALLATION 8
VISUAL CHECK 8
POWER RATINGS. 8
CONNECTION TO THE POWER SUPPLY 8
ENVIRONMENTAL CONDITIONS 9
LABVIEW DRIVERS 9
FUSES 10
AC FUSE REPLACEMENT 10
DC FUSE REPLACEMENT 11
FUSE RATINGS 11
FRONT PANEL CONTROLS. 12
REAR PANEL CONTROLS. 14
GENERAL INFORMATION 16
BASIC PULSE CONTROL 16
TRIGGER MODES. 17
GATING MODES 18
OPERATION AT LOW AMPLITUDES 18
OPTIONAL FEATURES. 19
DC OFFSET, "-OT" OPTION 19
DC OFFSET, "-EO" OPTION. 19
MONITOR OUTPUT, "-M" OPTION. 19
ELECTRONIC AMPLITUDE CONTROL, "-EA" OPTION 19
PROTECTING YOUR INSTRUMENT. 20
TURN OFF INSTRUMENT WHEN NOT IN USE 20
DO NOT EXCEED 1 MHz 20
USE A 50』 LOAD 20
OPERATIONAL CHECK 21
PROGRAMMING YOUR PULSE GENERATOR. 24
KEY PROGRAMMING COMMANDS. 24
ALL PROGRAMMING COMMANDS 25
MECHANICAL INFORMATION. 27
TOP COVER REMOVAL 27
RACK MOUNTING 27
ELECTROMAGNETIC INTERFERENCE 27
MAINTENANCE 28
REGULAR MAINTENANCE 28
CLEANING 28
WIRING DIAGRAMS 29
WIRING OF AC POWER 1/2 29
WIRING OF AC POWER 2/2 30
PCB 158E - LOW VOLTAGE DC POWER SUPPLY, 1/3 31
PCB 158E - LOW VOLTAGE DC POWER SUPPLY, 2/3 32
PCB 158E - LOW VOLTAGE DC POWER SUPPLY, 3/3 33
PCB 168 - HIGH VOLTAGE DC POWER SUPPLY 34
MAIN WIRING - POSITIVE UNITS 35
PERFORMANCE CHECKSHEET. 36

[^0]
INTRODUCTION

The AVP-AV-1-B is a high performance, GPIB and RS232-equipped instrument capable of generating 10 V into 50Ω loads at repetition rates up to 1 MHz . The output pulse width is variable from 0.4 to 4 ns , and the sync delay is variable up to $\pm 500 \mathrm{~ns}$. The rise and fall times are fixed at less than 200 ps.

Instruments with the "-P" model suffix can generate 0 to +10 V , whereas instruments with the "-N" model suffix can generate 0 to -10 V . Instruments with the "-PN" suffix can generate both polarities.

The AVP-AV-1-B is a highly flexible instrument. Aside from the internal trigger source, it can also be triggered or gated by external TTL-level signals. A front-panel pushbutton or a computer command can also be used to trigger the instrument.

The AVP-AV-1-B features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40-character backlit LCD display of the output amplitude, pulse width, pulse repetition frequency, and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete "snapshot" of all key instrument settings, and recall this setup at a later time.

AVAILABLE OPTIONS

The AVP-AV-1-B is available with several options:
-OT Option: this option adds an internally-generated 0 to $\pm 5 \mathrm{~V}$ DC offset to the main output.
-EO Option: the DC offset can be controlled by an externally generated 0 to +10 V analog control voltage.
-EA Option: the amplitude can be controlled by an externally generated 0 to +10 V analog control voltage.
-M Option: a monitor output is provided.
-R5 Option: A rack mounting kit is available. The "-R5" rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.
-TNT Option: Adds a rear-panel Ethernet connector, providing Telnet-based remote control from a network.

SPECIFICATIONS

Model:	AVP-AV-1-B ${ }^{2}$
Amplitude ${ }^{3,4,7}$: (50 Ohm load)	0 to 10 Volts
Pulse width ${ }^{3}$: (FWHM)	$0.4-4.0 \mathrm{~ns}$
PRF: $\begin{gathered}\text { external trigger mode: } \\ \text { internal trigger mode: }\end{gathered}$	0 Hz to 1 MHz 1 Hz to 1 MHz
Rise time (20\%-80\%) ${ }^{7}$:	$\leq 200 \mathrm{ps}$
Fall time (80\%-20\%) ${ }^{7}$:	$\leq 200 \mathrm{ps}$
Polarity:	specify -P, -N, or -PN
Dual Polarity Option Style:	one output, with switchable polarity
GPIB and RS-232 control ${ }^{2}$:	Standard on -B units.
LabView Drivers:	Check http://www.avtechpulse.com/labview for availability and downloads
Telnet / Ethernet control ${ }^{8}$:	Optional on -B units. See http://www.avtechpulse.com/options/tnt for details.
Propagation delay:	≤ 140 ns (Ext trig in to pulse out)
Jitter, Ext trig in to pulse out:	$\pm 35 \mathrm{ps} \pm 0.015 \%$ of sync delay
DC offset or bias insertion:	Option available. Apply required DC offset or bias in the range of ± 50 Volts (250 mA max) to back panel solder terminal. See note 9.
Trigger required:	ext trig mode: +5 Volt, 50 ns to 500 ns (TTL)
Sync delay:	Variable 0 to 500 ns (sync out to pulse out)
Sync output:	+3 Volts, 100 ns , will drive 50Ω
Monitor output option ${ }^{10}$:	Provides a 20 dB (x10) attenuated coincident replica of main output
Connectors: OUT, MONITOR ${ }^{8}$ TRIG: SYNC: GATE:	SMA BNC BNC BNC
Power requirement:	100-240 Volts, $50-60 \mathrm{~Hz}$
Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$):	$100 \mathrm{~mm} \times 430 \mathrm{~mm} \times 375 \mathrm{~mm}$ (3.9 " $\times 17$ " $\times 14.8$ ")
Chassis material:	anodized aluminum, with blue plastic trim
Mounting, Temperature range:	Any, $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

1) -C suffix indicates stand-alone lab instrument with internal clock and line powering. No suffix indicates miniature module requiring DC power and external trigger. (See http://www.avtechpulse.com/formats for details of the four basic instrument formats)
2) -B suffix indicates IEEE-488.2 GPIB and RS-232 control of amplitude, pulse width, PRF and delay (See http://www.avtechpulse.com/gpib).
3) For analog electronic control (0 to +10 V) of amplitude, pulse width or DC offset suffix model number with -EA or -EW or -EO. Electronic control units also include standard front-panel controls. -EW not available on -B units
4) For operation at amplitudes of less than 20% of full-scale, best results will be obtained by setting the amplitude near full-scale and using external attenuators on the output
5) For $20-500$ ns pulse width, suffix model number with -W. Rise times increase to 150 ps for -W units. - W units have a propagation delay of 30 ns

6) Indicate desired polarity by suffixing model number by -P or -N (i.e. positive or negative) or -P-PN or -N-PN for dual polarity option where the suffix preceding -PN indicates the polarity at the mainframe output port.
7) For double pulse option add suffix -DP. Rise and fall times for units with this option fixed at 300 ps . Units with this option have a maximum output amplitude of 70% of the rated maximum amplitude (except when the relative time delay is set to zero, in which case the addition of the two coincident pulses allows 140% of the rated amplitude to be obtained).
8) Add the suffix -TNT to the model number to specify the Telnet / Ethernet control option.
9) For externally applied DC offset option suffix model number with -OS. The Avtech AVX-T bias tee can also be used to obtain DC offset. For internally generated DC offset option (0 to $\pm 5 \mathrm{~V}$) add suffix -OT or -EO to model number. (The -OT option is controlled by a front-panel dial, whereas the -EO option can be controlled by a front-panel dial or by an external 0 to +10 V voltage). -OT, -EO not available on modules
10) For monitor option add suffix -M.
11) For ECL trigger option, add suffix -ECL.

EC DECLARATION OF CONFORMITY

We
Avtech Electrosystems Ltd.
P.O. Box 5120, LCD Merivale

Ottawa, Ontario
Canada K2C 3H4
declare that this pulse generator meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emission
EN 50082-1 Immunity
and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use

INSTALLATION

VISUAL CHECK

After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the "Programming Manual for -B Instruments") are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from 100-240 V, 50-60 Hz.
The maximum power consumption is 57 Watts. Please see the "FUSES" section for information about the appropriate AC and DC fuses.

This instrument is an "Installation Category II" instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.) The table below describes the power cord that is supplied with this instrument, depending on the destination region:

Destination Region	Description	Volex (http://www.volex.com) Part Number	Newark (http://www.newark.com) Stock Number
Continental Europe	European CEE 7/7 "Schuko" $230 \mathrm{~V}, 50 \mathrm{~Hz}$	$17850-\mathrm{C} 3-326$	44 F 1841
United Kingdom	BS 1363, 230V, 50 Hz	$17962-\mathrm{C} 3-10$	84 F 1025
Switzerland	SEV 1011, 230V, 50 Hz	$2102 \mathrm{H}-\mathrm{C} 3-10$	93 F 2452
Israel	SI 32, 220V, 50 Hz	$2115 \mathrm{H}-\mathrm{C} 3-10$	04 F 1115
North America, and all other areas	NEMA 5-15, 120V, 60 Hz	$17250-\mathrm{B} 1-10$	36 F 1255

ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:

1. indoor use;
2. altitude up to 2000 m ;
3. temperature $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$;
4. maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40{ }^{\circ} \mathrm{C}$;
5. Mains supply voltage fluctuations up to $\pm 10 \%$ of the nominal voltage;
6. no pollution or only dry, non-conductive pollution.

LABVIEW DRIVERS

A LabVIEW driver for this instrument is available for download on the Avtech web site, at http://www.avtechpulse.com/labview. A copy is also available in National Instruments' Instrument Driver Library at http://www.natinst.com/.

FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:

DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS

The following table lists the required fuses:

Fuses	Nominal Mains Voltage	Rating	Case Size	Manufacturer's Part Number (Wickmann)	Distributor's Part Number (Digi-Key)
\#1, \#2 (AC)	$100-240 \mathrm{~V}$	0.5A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	1950500000	WK5041-ND
\#3 (DC)	N/A	1.0A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	1951100000	WK5048-ND
\#4 (DC)	N/A	0.5A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	1950500000	WK5041-ND

The fuse manufacturer is Wickmann (http://www.wickmann.com/).
Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com/) and other distributors.

FRONT PANEL CONTROLS

1. POWER Switch. This is the main power switch. When turning the instrument on, there may be a delay of several seconds before the instrument appears to respond.
2. OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.
3. OUT CONNECTOR. This SMA connector provides the main output signal, into load impedances of 50Ω.
4. SYNC OUT. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main output by a duration set by the "DELAY" controls and has an approximate amplitude of +3 Volts to $R_{L}>1 \mathrm{k} \Omega$ with a pulse width of approximately 100 ns .
5. LIQUID CRYSTAL DISPLAY (LCD). This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The "Programming Manual for -B Instruments" describes the menus and submenus in detail.
6. KEYPAD.

Control Name	Function
MOVE	This moves the arrow pointer on the display.
CHANGE	This is used to enter the submenu, or to select the operating mode, pointed to by the arrow pointer.
$\times 10$	If one of the adjustable numeric parameters is displayed, this increases the setting by a factor of ten.
$\div 10$	If one of the adjustable numeric parameters is displayed, this decreases the setting by a factor of ten.
$+/-$	If one of the adjustable numeric parameters is displayed, and this parameter can be both positive or negative, this changes the sign of the parameter.
EXTRA FINE	This changes the step size of the ADJUST knob. In the extra- fine mode, the step size is twenty times finer than in the normal mode. This button switches between the two step sizes.
	This large knob adjusts the value of any displayed numeric adjustable values, such as frequency, pulse width, etc. The adjust step size is set by the "EXTRA FINE" button. When the main menu is displayed, this knob can be used to move the arrow pointer.

REAR PANEL CONTROLS

1. AC POWER INPUT. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.
2. AC FUSE DRAWER. The two fuses that protect the $A C$ input are located in this drawer. Please see the "FUSES" section of this manual for more information.
3. DC FUSES. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information.
4. GATE. This TTL-level $(0$ and $+5 \mathrm{~V})$ logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulleddown to ground by a $1 \mathrm{k} \Omega$ resistor. When set to active low mode, this input is pulledup to +5 V by a $1 \mathrm{k} \Omega$ resistor.
5. TRIG. This TTL-level $(0$ and $+5 \mathrm{~V})$ logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is $1 \mathrm{k} \Omega$. (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.)

When triggering externally, the instrument can be set such that the output pulse width tracks the pulse width on this input, or the output pulse width can be set
independently.
6. GPIB Connector. A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on GPIB control.
7. RS-232 Connector. A standard serial cable with a 25 -pin male connector can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on RS-232 control.
8. LAN Connector and Indicator. (Optional feature. Present on -TNT units only.) The -TNT option "Internet-enables" Avtech pulse generators by adding this standard Ethernet port to the rear panel, in addition to the IEEE-488.2 GPIB and RS-232 ports normally found on "-B" units. Commands are sent using the standard Telnet protocol. The SCPI-compliant command set is the same as that used for GPIB and RS-232 control. The -TNT option uses the Dynamic Host Configuration Protocol (DHCP) to obtain its network address. A DHCP server must be present on the local network for the -TNT option to operate properly.
9. AMP Connector. (Optional feature. Present on "-EA" units only.) The output amplitude can be set to track the voltage on this input. Zero Volts in corresponds to zero amplitude output, and +10 V in corresponds to maximum amplitude out. This mode is activated by selecting "Ext Control" on the front-panel amplitude menu, or with the "source:voltage external" command.
10. OS Connector. (Optional feature. Present on units with the -OS option only). This connector allows an externally generated DC offset to be added to the output. The desired DC offset is applied to this connector, which is connected to the output centre conductor through a high-quality RF inductor. Do not exceed $\pm 50 \mathrm{~V}, 250 \mathrm{~mA}$.
11. M Connectors. (Optional feature. Present on "-M" units only.) The monitor output provides an attenuated replica (20 dB down) of the voltage on the main output. The monitor output is designed to operate into a 50 Ohm load. -PN units will have two monitor outputs (MP and MN, one for each polarity).

GENERAL INFORMATION

BASIC PULSE CONTROL

This instrument can be triggered by its own internal clock or by an external TTL trigger signal. In either case, two output channels respond to the trigger: OUT and SYNC.

- OUT. This is the main output.
- SYNC. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. When the delay is set to a negative value the SYNC pulse follows the OUT pulse.

These pulses are illustrated below, assuming internal triggering and a positive delay:

Figure A

If the delay is negative, the order of the SYNC and OUT pulses is reversed:

SYNC OUT
(generated by the internal oscillator)

Figure B

The next figure illustrates the relationship between the signals when an external TTLlevel trigger is used:

Figure C

As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed.
In general, the delay, pulse width, and frequency (when in the internal mode), of the OUT pulse can be varied with front panel controls or via the GPIB or RS-232 computer interfaces.

TRIGGER MODES

This instrument has four trigger modes:

- Internal Trigger: the instrument controls the trigger frequency, and generates the clock internally.
- External Trigger: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector.
- Manual Trigger: the instrument is triggered by the front-panel "SINGLE PULSE" pushbutton.
- Hold Trigger: the instrument is set to not trigger at all.

These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the "Programming Manual for -B Instruments" for more details.)

GATING MODES

Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the frontpanel gate menu or the appropriate programming commands. When gated, the output will complete the full pulse width if the output is high, and then stop triggering. Pulses are not truncated.

OPERATION AT LOW AMPLITUDES

This instrument will generate the best waveforms when operated near maximum amplitude. If amplitudes less than $1 / 3$ of the full-scale value are desired, better results will be obtained if the pulse generator is operated at a higher amplitude, and an attenuator is connected to the output. Avtech recommends the ATT-0444-XX-SMA-02 series of 18 GHz coaxial attenuators from Midwest Microwave, http://www.midwestmicrowave.com/. (The "XX" in the part number is replaced with the numeric attenuation value in dB).

OPTIONAL FEATURES

DC OFFSET, "-OT" OPTION

This option adds an internally-generated 0 to $\pm 5 \mathrm{~V}$ DC offset to the main output. The offset level is set by the front-panel controls, or by computer commands. The rear-panel OS switch must be set to "ON" to activate the internally-generated offset feature.

DC OFFSET, "-EO" OPTION

This option allows adds a DC offset to the main output, which is controlled by an externally generated 0 to +10 V analog control voltage applied to a rear-panel connector.

MONITOR OUTPUT, "-M" OPTION

The monitor output provides an attenuated replica (20 dB down) of the voltage on the main output. The monitor output is designed to operate into a 50 Ohm load.

ELECTRONIC AMPLITUDE CONTROL, "-EA" OPTION

The output amplitude can be set to track the voltage on this input. Zero Volts in corresponds to zero amplitude output, and +10 V in corresponds to maximum amplitude out. This mode is activated by selecting "Ext Control" on the front-panel amplitude menu, or with the "source:voltage external" command.

PROTECTING YOUR INSTRUMENT

TURN OFF INSTRUMENT WHEN NOT IN USE

The lifetime of the switching elements in the pulse generator module is proportional to the running time of the instrument. For this reason the prime power to the instrument should be turned off when the instrument is not in use. In the case of failure, the switching elements are easily replaced following the procedure described in a following section.

DO NOT EXCEED 1 MHz

The output stage may be damaged if triggered by an external signal at a pulse repetition frequency greater than 1 MHz .

USE A 50Ω LOAD

The output stage may be damaged if the output is not terminated into a 50Ω load.

OPERATIONAL CHECK

This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well.

Before proceeding with this procedure, finish reading this instruction manual thoroughly. Then read the "Local Control" section of the "Programming Manual for -B Instruments" thoroughly. The "Local Control" section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls.

BASIC TEST ARRANGEMENT

1. Connect the pulse generator to a sampling oscilloscope as shown above. Note that:
a) The use of 40 dB attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than 1 Volt. Factory tests are conducted using Midwest Microwave model ATT-0444-20-SMA-02 attenuators.
b) The TRIG output channel provides TTL level signals (approximately 0 and +3 V). To avoid overdriving the TRIG input channel of some scopes, a 20 dB attenuator should be placed at the input to the scope trigger channel.
c) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 10 GHz .
d) Set the oscilloscope to trigger externally with the vertical setting at $100 \mathrm{mV} / \mathrm{div}$ and the horizontal setting at $5 \mathrm{~ns} /$ div.
2. Turn on the AVP-AV-1-B. The main menu will appear on the LCD.
3. To set the AVP-AV-1-B to trigger from the internal clock at a PRF of 10 kHz :
a) The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is.
b) Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 10 kHz .
c) The arrow pointer should be pointing at the "Internal" choice. If it is not, press MOVE until it is.
d) Press CHANGE to return to the main menu.
4. To set the delay to 100 ns :
a) Press the MOVE button until the arrow pointer is pointing at the delay menu item.
b) Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 100 ns .
c) The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is.
d) Press CHANGE to return to the main menu.
5. To set the pulse width to 2 ns :
a) Press the MOVE button until the arrow pointer is pointing at the pulse width menu item.
b) Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 2 ns .
c) The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is.
d) Press CHANGE to return to the main menu.
6. At this point, nothing should appear on the oscilloscope.
7. To enable the output:
a) Press the MOVE button until the arrow pointer is pointing at the output menu item.
b) Press the CHANGE button. The output submenu will appear.
c) Press MOVE until the arrow pointer is pointing at the "ON" choice.
d) Press CHANGE to return to the main menu.
8. To change the output amplitude:
a) Press the MOVE button until the arrow pointer is pointing at the amplitude menu item.
b) Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at +10 V (or -10 V for "-N" models).
c) Observe the oscilloscope. You should see 2 ns wide, 10 V pulses. If you do not, you may need to adjust the delay setting to a value more compatible with your sampling oscilloscope. Repeat step 4 if required. You may also need to adjust the sampling scope controls.
d) Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary. Return it to 10 V .
e) ("-PN" units only) Press the +/- button on the front panel. The amplitude as seen on the oscilloscope should flip polarity, to -10 V .
f) Press CHANGE to return to the main menu.

This completes the operational check.

PROGRAMMING YOUR PULSE GENERATOR

KEY PROGRAMMING COMMANDS

The "Programming Manual for -B Instruments" describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up:

*rst	(resets the instrument)
trigger:source internal	(selects internal triggering)
frequency 1000 Hz	(sets the frequency to 1000 Hz)
pulse:width 2 ns	(sets the pulse width to 2 ns)
pulse:delay 20 ns	(sets the delay to 20 ns)
volt:ampl 5	(sets the amplitude to +5 V)
	("-N" units should use "volt:ampl -5)
output on	(turns on the output)

For triggering a single event, this sequence would be more appropriate:

*rst	(resets the instrument)
trigger:source hold	(turns off all triggering)
pulse:width 2 ns	(sets the pulse width to 2 ns)
output on	(turns on the output)
volt:ampl 5	(sets the amplitude to +5 V)
	("-N" units should use "volt:ampl -5)
trigger:source immediate	(generates a single non-repetitive trigger event)
trigger:source hold	(turns off all triggering)
output off	(turns off the output)

To set the instrument to trigger from an external TTL signal applied to the rear-panel TRIg connector, use:

*rst	(resets the instrument)
trigger:source external	(selects internal triggering)
pulse:width 2 ns	(sets the pulse width to 2 ns)
pulse:delay 1 us	(sets the delay to 1 us)
volt:ampl 5	(sets the amplitude to +5 V)
	("-N" units should use "volt:ampl -5)
output on	(turns on the output)

These commands will satisfy 90% of your programming needs.

ALL PROGRAMMING COMMANDS

For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the "Programming Manual for -B Instruments". (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.)

:SBITS 1\|2				
:ERRor				
:[NEXT]?	[query only]			
:COUNT?	[query only]			
:VERSion?	[query only]			
TRIGger:				
:SOURce	INTernal \| EXTernal	MANual	HOLD	IMMediate
*CLS	[no query form]			
*ESE	<numeric value>			
*ESR?	[query only]			
*IDN?	[query only]			
*OPC				
*SAV	0\|1	2	3 [no query form]	
*RCL	0\|1	2	3 [no query form]	
*RST	[no query form]			
*SRE	<numeric value>			
*STB?	[query only]			
*TST?	[query only]			
*WAI	[no query form]			

MECHANICAL INFORMATION

TOP COVER REMOVAL

If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

Always disconnect the power cord before opening the instrument.
There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair.

㐱 Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed.

RACK MOUNTING

A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded 50Ω loads using shielded 50Ω coaxial cables. Unused outputs should be terminated with shielded 50Ω coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3 m in length.

MAINTENANCE

REGULAR MAINTENANCE

This instrument does not require any regular maintenance.
On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the "FUSES" section for details.

CLEANING

If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the "TOP COVER REMOVAL" section for instructions on accessing the interior.) No other cleaning is recommended.

WIRING DIAGRAMS

WIRING OF AC POWER 1/2

WIRING OF AC POWER 2/2

PCB 158E - LOW VOLTAGE DC POWER SUPPLY, 1/3

PCB 158E - LOW VOLTAGE DC POWER SUPPLY, 2/3

PCB 158E - LOW VOLTAGE DC POWER SUPPLY, 3/3

PCB 168 - HIGH VOLTAGE DC POWER SUPPLY

MAIN WIRING - POSITIVE UNITS

PERFORMANCE CHECKSHEET

[^0]: Manual Reference: T:linstructwordlavp\AVP-AV-1-B,edition5.sxw.
 Last modified October 6, 2004.
 Copyright © 2004 Avtech Electrosystems Ltd, All Rights Reserved

